A Survey on Statistical Modeling and Machine Learning Approaches to Computer Assisted Medical Intervention: Intraoperative Anatomy Modeling and Optimization of Interventional Procedures

نویسندگان

  • Ken'ichi Morooka
  • Masahiko Nakamoto
  • Yoshinobu Sato
چکیده

This paper reviews methods for computer assisted medical intervention using statistical models and machine learning technologies, which would be particularly useful for representing prior information of anatomical shape, motion, and deformation to extrapolate intraoperative sparse data as well as surgeons’ expertise and pathology to optimize interventions. Firstly, we present a review of methods for recovery of static anatomical structures by only using intraoperative data without any preoperative patient-specific information. Then, methods for recovery of intraoperative motion and deformation are reviewed by combining intraoperative sparse data with preoperative patient-specific stationary data, which is followed by a survey of articles which incorporated biomechanics. Furthermore, the articles are reviewed which addressed the used of statistical models for optimization of interventions. Finally, we conclude the survey by describing the future perspective. key words: statistical shape model, statistical deformation model, preoperating planning, surgical navigation, anatomical shape, organ motion, tissue deformation

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Machine learning algorithms in air quality modeling

Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...

متن کامل

Stock Price Prediction using Machine Learning and Swarm Intelligence

Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...

متن کامل

Sports Result Prediction Based on Machine Learning and Computational Intelligence Approaches: A Survey

In the current world, sports produce considerable statistical information about each player, team, games, and seasons. Traditional sports science believed science to be owned by experts, coaches, team managers, and analyzers. However, sports organizations have recently realized the abundant science available in their data and sought to take advantage of that science through the use of data mini...

متن کامل

Thermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning

Statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. This paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. The thermal conductivity of nanofluids increases with the volume fraction and temperature. Machine learni...

متن کامل

Application of the Extreme Learning Machine for Modeling the Bead Geometry in Gas Metal Arc Welding Process

Rapid prototyping (RP) methods are used for production easily and quickly of a scale model of a physical part or assembly. Gas metal arc welding (GMAW) is a widespread process used for rapid prototyping of metallic parts. In this process, in order to obtain a desired welding geometry, it is very important to predict the weld bead geometry based on the input process parameters, which are voltage...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEICE Transactions

دوره 96-D  شماره 

صفحات  -

تاریخ انتشار 2013